3. [8 points] A U of M student is studying the various invasive species of insects she finds in a sample plot of forest.
a. [3 points] On her first visit to the plot, she finds 18 ash borers. She estimates that the number of ash borers will grow by 2.4% each day. Based on this estimate, write a formula for $A(w)$, the number of ash borers in her plot w weeks after her first visit.

Solution: We know that $A(w)$ is of the form $a b^{w}$ and that $A(0)=a=18$. We also know that after 1 day, which is $\frac{1}{7}$ of a week, the number of ash borers is 18(1.024). That is,

$$
\begin{gathered}
A(1 / 7)=18 b^{1 / 7}=18(1.024) \\
b^{1 / 7}=1.024 \\
b=1.024^{7}
\end{gathered}
$$

Answer: $\quad A(w)=$ \qquad
b. [5 points] The student's data suggest that, w weeks after her first visit, the number of pineshoot beetles in her plot will be given by

$$
P(w)=11 e^{w / 6},
$$

while the number of gypsy moths will be given by

$$
G(w)=3(1.37)^{w} .
$$

After her first visit, how many weeks will it take for the number of pineshoot beetles to equal the number of gypsy moths? Give your answer in exact form.
Method 2:

$$
\begin{gathered}
11 e^{w / 6}=2(1.37)^{w} \\
\frac{11}{3}=\frac{1.37^{w}}{e^{w / 6}} \\
\frac{11}{3}=\left(\frac{1.37}{e^{1 / 6}}\right)^{w} \\
\ln \left(\frac{11}{3}\right)=\ln \left(\left(\frac{1.37}{e^{1 / 6}}\right)^{w}\right) \\
\ln \left(\frac{11}{3}\right)=w \ln \left(\frac{1.37}{e^{1 / 6}}\right) \\
w=\frac{\ln \left(\frac{11}{3}\right)}{\ln \left(\frac{1.37}{e^{1 / 6}}\right)}
\end{gathered}
$$

Solution:

Method 1:

$$
\begin{gathered}
11 e^{w / 6}=3(1.37)^{w} \\
\ln \left(11 e^{w / 6}\right)=\ln \left(3(1.37)^{w}\right) \\
\ln (11)+\ln \left(e^{w / 6}\right)=\ln (3)+\ln \left(1.37^{w}\right) \\
\ln (11)+w / 6=\ln (3)+w \ln (1.37) \\
\ln (11)-\ln (3)=w(\ln (1.37)-1 / 6) \\
w=\frac{\ln (11)-\ln (3)}{\ln (1.37)-1 / 6}
\end{gathered}
$$

Answer:

$$
w=\frac{\ln (11)-\ln (3)}{\ln (1.37)-1 / 6}
$$

