
6. [14 points] Below is a portion of the graph of a function f(x) with domain $[-7, \infty)$. Note that f(x) is linear for -3 < x < -2 and -2 < x < 1, and that f(x) has a vertical asymptote of x = 5 and a horizontal asymptote of y = 6.

Evaluate each of the following quantities. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE. You do not need to show work in this problem.

a. [2 points]
$$\lim_{x \to -2^+} f(x)$$

d. [2 points]
$$\lim_{x \to -5^-} f(-x)$$

Answer: = _____

Answer: = _____

b. [2 points]
$$\lim_{x \to -5} f(x)$$

e. [2 points]
$$\lim_{x\to 2} f(f(x))$$

Answer: = _____

Answer: = _____

c. [2 points]
$$\lim_{h\to 0} \frac{f(h) - f(0)}{h}$$

Answer: = _____

Define the function $g(x) = \frac{1}{3}f(2x) + 7$. Fill in the blanks below.

f. [2 points] The function g(x) has a horizontal asymptote of y = ______.

g. [2 points] The function g(x) has a vertical asymptote of x =______.