1. [11 points] Reiner recently went for a 5 -mile run. Let $R(t)$ be Reiner's distance, in miles, t minutes after he started his run, and let $C(m)$ be the number of calories that Reiner had burned after running m miles. A table giving some values of $R(t)$ and a graph of $C(m)$ are given below. Assume that the functions are invertible, and note that $C(m)$ is linear for $0<m<1.5$ and $4<m<5$.

t	0	6	10	16	23	27	32	34
$R(t)$	0	0.8	1.3	2.5	3.2	3.8	4	4.4

a. [5 points] Compute the following quantities exactly. If the quantity does not exist, write DNE, or if there is not enough information to compute it exactly, write NEI.
i. [1 points] How many minutes does it take for Reiner to run his first 4 miles?

$$
\text { Answer: }=\frac{R^{-1}(4)=32}{}
$$

ii. [2 points] How many calories has Reiner burned after running for 10 minutes?

$$
\text { Answer: }=\frac{C(R(10))=130}{}
$$

iii. [2 points] How many minutes does it take for Reiner to burn his first 300 calories?

$$
\text { Answer: }=\frac{R^{-1}\left(C^{-1}(300)\right)=16}{}
$$

b. [2 points] Compute the average rate of change of $C(m)$ from $m=1.5$ to $m=4$. Include units.
\qquad
c. [2 points] Estimate $C^{\prime}(\pi)$. Include units.
\qquad
d. [2 points] Estimate Reiner's instantaneous velocity 34 minutes into his run. Include units.

$$
\text { Answer: }=\approx 0.2 \text { miles per minute }
$$

