10. [9 points] Let $P(t)$ be a town's population, in thousands of people, t years after the beginning of 2000. Some values of $P^{\prime}(t)$, the derivative of $P(t)$, are given in the table below.

t	-8	-3	0	3	6	8	12	15
$P^{\prime}(t)$	2	2	0	0	3	0	-6	-2

Assume that between each pair of consecutive values of t given in the table, $P^{\prime}(t)$ is either always increasing, always decreasing, or always constant.
a. [1 point] Let $y=P^{\prime}(t)$. What are the units of y ?

$$
\text { Answer: }=\quad \text { thousands of people per year }
$$

For each of the following, circle all correct answers.
b. [2 points] At which of the following time(s) is the town's population increasing?

$$
t=-6 \quad t=2 \quad t=7 \quad t=13 \quad \text { NONE OF THESE }
$$

c. [2 points] On which of the following interval(s) is the town's population constant?

$$
(-7,-5) \quad(1,2) \quad(7,10) \quad \text { NONE OF THESE }
$$

d. [2 points] On which of the following interval(s) is $P(t)$ linear?

$$
\begin{equation*}
(-7,-5) \tag{1,2}
\end{equation*}
$$

NONE OF THESE
e. [2 points] At which of the following time(s) is the town's population the largest?

$$
t=3 \quad t=6 \quad t=8 \quad t=15
$$

