2. [5 points] Let

\[Q(r) = 1 + r^{\ln(r)}. \]

Use the limit definition of the derivative to write an explicit expression for \(Q'(5) \). Your answer should not involve the letter \(Q \). Do not attempt to evaluate or simplify the limit. Please write your final answer in the answer box provided below.

Answer:

\[
Q'(5) = \lim_{h \to 0} \frac{1 + (5 + h)^{\ln(5 + h)} - (1 + 5^{\ln(5)})}{h}
\]

3. [11 points] Inga, a beekeeper, sets up a new hive on April 1. At two later times, she estimates the hive’s population. These estimates are shown in the table below.

<table>
<thead>
<tr>
<th>weeks after April 1</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>population of the hive, in thousands</td>
<td>7.7</td>
<td>10.9</td>
</tr>
</tbody>
</table>

a. [2 points] Find a formula for a linear function \(L(t) \) modeling the hive’s population, in thousands, \(t \) weeks after April 1.

Answer:

\[L(t) = \frac{16}{15}(t - 2) + 7.7 \]

b. [4 points] Find a formula for an exponential function \(E(t) \) modeling the hive’s population, in thousands, \(t \) weeks after April 1.

Solution: Since \(E(2) = 7.7 \) and \(E(5) = 10.9 \) and we know \(E(t) = ab^t \) for some \(a \) and \(b \),

\[
\begin{align*}
10.9 &= ab^5 \\
7.7 &= ab^2 \\
\frac{10.9}{7.7} &= b^3 \\
b &= \left(\frac{10.9}{7.7}\right)^{1/3} \approx 1.1228 \\
a &= \frac{7.7}{b^2} = \frac{7.7}{\left(\frac{10.9}{7.7}\right)^{2/3}} \approx 6.1076.
\end{align*}
\]

Then \(E(t) = \frac{7.7}{\left(\frac{10.9}{7.7}\right)^{2/3}} \left(\frac{10.9}{7.7}\right)^{t/3} \approx 6.1076(1.1228)^t \).

This problem continues on the next page.
Inga is now studying the populations of two other hives. She determines that the population, in thousands, \(t \) weeks after April 1 of her hive of Carniolan bees can be modeled by

\[
C(t) = 9e^{0.14t},
\]

while the population, in thousands, of her hive of Starline bees can be modeled by

\[
S(t) = 17(1.05)^t.
\]

c. [1 point] By what percent is the hive of Carniolan bees growing each week?

Solution: Since \(e^{0.14} \approx 1.01502 \), we have that the growth rate is \(e^{0.14} - 1 \approx 0.0152 \) or 15.02%.

Answer: \(15.02 \) %

d. [4 points] At what time \(t \) will the populations of these two hives be equal? Give your answer in exact form, and show every step of your algebraic work.

Solution:

Method 1:

\[
9e^{0.14t} = 17(1.05)^t
\]

\[
\ln(9e^{0.14t}) = \ln(17(1.05)^t)
\]

\[
\ln(9) + \ln(e^{0.14t}) = \ln(17) + \ln(1.05^t)
\]

\[
\ln(9) + 0.14t = \ln(17) + t\ln(1.05)
\]

\[
\ln(9) - \ln(17) = t(\ln(1.05) - 0.14)
\]

\[
t = \frac{\ln(9) - \ln(17)}{\ln(1.05) - 0.14}
\]

Method 2:

\[
9e^{0.14t} = 17(1.05)^t
\]

\[
\frac{9}{17} = \frac{1.05^t}{e^{0.14t}}
\]

\[
\ln\left(\frac{9}{17}\right) = \ln\left(\left(\frac{1.05}{e^{0.14}}\right)^t\right)
\]

\[
\ln\left(\frac{9}{17}\right) = t\ln\left(\frac{1.05}{e^{0.14}}\right)
\]

\[
t = \frac{\ln\left(\frac{9}{17}\right)}{\ln\left(\frac{1.05}{e^{0.14}}\right)}
\]

Answer: \(\frac{\ln(9) - \ln(17)}{\ln(1.05) - 0.14} \)