6. [14 points] Below is a portion of the graph of a function f(x) with domain $[-7, \infty)$. Note that f(x) is linear for -3 < x < -2 and -2 < x < 1, and that f(x) has a vertical asymptote of x = 5 and a horizontal asymptote of y = 6.

Evaluate each of the following quantities. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write DNE. You do not need to show work in this problem.

a . [2 points] $\lim_{x \to -2^+} f(x)$	d . [2 points] $\lim_{x \to -5^-} f(-x)$
Answer: =7	Answer: = <u>DNE</u>
b. [2 points] $\lim_{x \to -5} f(x)$	e. [2 points] $\lim_{x \to 2} f(f(x))$
Answer: $=$ <u>5</u>	Answer: =6
c. [2 points] $\lim_{h \to 0} \frac{f(h) - f(0)}{h}$	
Answer: $=$ <u>-2</u>	

Define the function $g(x) = \frac{1}{3}f(2x) + 7$. Fill in the blanks below.

- **f.** [2 points] The function g(x) has a horizontal asymptote of y = -9
- g. [2 points] The function g(x) has a vertical asymptote of $x = -\frac{5/2}{2}$.