7. [11 points] Falco decides to raise sheep and cows on his farm.

- Let $W(p)$ be the amount of wool, in pounds per year, produced by a sheep who was fed p pounds of food per day.
- Let $M(p)$ be the amount of milk, in thousands of gallons per year, produced by a cow who was fed p pounds of food per day.
The functions $W(p)$ and $M(p)$ are differentiable and invertible.
a. [2 points] Use a complete sentence to give a practical interpretation of the the equation

$$
W^{-1}(28)=10
$$

Solution: A sheep fed 10 pounds of food per day produced 28 pounds of wool per year.
b. [3 points] Write a single equation representing the following statement in terms of the functions W, M, and/or their inverses:

A sheep that produced 12 pounds of wool per year was fed 5 fewer pounds of food per day than a cow that produced 2430 gallons of milk per year.

Answer:

$$
M^{-1}(2.43)=W^{-1}(12)+5
$$

c. [3 points] Complete the following sentence to give a practical interpretation of the equation

$$
M^{\prime}(23)=0.15
$$

If Falco feeds a cow 22.4 pounds of food per day instead of 23 pounds of food per day, then...
Solution: ...the cow will produce approximately 90 fewer gallons of milk per year.
d. [3 points] Circle the one sentence that gives a valid interpretation of the equation

$$
\left(W^{-1}\right)^{\prime}(12)=0.7
$$

(i. To increase a sheep's wool production from 12 pounds per year to 12.6 pounds per year, Falco should feed it about 0.42 extra pounds of food per day.
ii. To increase a sheep's wool production from 12 pounds per year to 12.1 pounds per year, Falco should feed it approximately 0.7 more pounds of food per day.
iii. A sheep that is fed 12.3 pounds of food per day instead of 12 pounds of food per day will produce approximately 0.21 additional pounds of wool per year.
iv. When a sheep produces 12 pounds of wool per year, feeding it an extra pound of food per day will cause it to produce about 0.7 additional pounds of wool per year.

