9. [9 points] You do not need to show work in this problem, but limited partial credit may be awarded for work shown.
a. [5 points] Consider the rational function

$$
g(x)=\frac{\left(B x^{A}+7\right)(4 x-C)}{\left(3 x^{2}+5\right)(2 x-12)(x-D)},
$$

where A, B, C, and D are constants. Suppose that

- $y=8$ is a horizontal asymptote of $g(x)$
- $x=5$ is the only vertical asymptote of $g(x)$.

Find the values of A, B, C, and D.

Solution:

For a non-zero horizontal asymptote to exist, the degree of the numerator and denominator must be equal. Since the denominator has degree 4, we must have $A=3$.

The horizontal asymptote is then equal $\frac{4 B}{6}$, so for this to equal 8 , we must have $B=12$.
A vertical asymptote at $x=5$ tells us the denominator must be zero at $x=5$, so $D=5$.
Since there is only one vertical asymptote, we know $x=6$ must be a hole. Thus $4 x-C=0$ when $x=6$, so $C=24$.

Answer: $A=\begin{aligned} & \mathbf{3}\end{aligned} B=\begin{aligned} & \mathbf{1 2}\end{aligned} C=\begin{aligned} & \mathbf{2 4}\end{aligned}$
b. [4 points] Consider the piecewise function

$$
h(x)= \begin{cases}E+\frac{28}{3^{x}+4} & x \leq 1 \\ G+\frac{F}{7^{x}+5} & x>1\end{cases}
$$

where E, F, and G are constants. Suppose that

- $\lim _{x \rightarrow \infty} h(x)=8.5$
- $\lim _{x \rightarrow-\infty} h(x)=12$
- $h(x)$ is continuous at $x=1$.

Find the values of E, F, and G.
Solution:
As x approaches infinity, $\frac{F}{7^{x}+5}$ goes to 0 , so $G=8.5$.
As x approaches negative infinity, $\frac{28}{3^{x}+4}$ goes to $\frac{28}{4}=7$. Thus $E+7=12$, so $E=5$.
Since we know $h(x)$ is continuous at 1 , we must have

$$
E+\frac{28}{3+4}=G+\frac{F}{7^{x}+5},
$$

which reduces to $9=8.5+\frac{F}{12}$. This gives us $F=6$.

$$
\text { Answer: } \quad E=\frac{5}{6} \quad F=\frac{6}{8.5}
$$

