10. [14 points] The graph of the function $f(x)$ is shown below. (Reduced scale for solutions)

For a.-b., give your answers as a list of one or more of the given numbers, or write NONE
a. [2 points] For which of the values $c=-3,-2,-1,0,1$ is $f(x)$ continuous at $x=c$?

Solution: Among these options, $f(x)$ is only continuous when $x=-3$ and when $x=-1$.
b. [2 points] For which of the values $c=-3,-2,-1,0,1$ is $\lim _{x \rightarrow c^{-}} f(x)=f(c)$?

Solution: This condition is certainly satisfied at the points where $f(x)$ is continuous, so we already know that $x=-3$ and $x=-1$ should be in our answer. Checking the other points: $\lim _{x \rightarrow-2^{-}} f(x)=-1$ and $f(-2)=-1 . \quad \lim _{x \rightarrow 0^{-}} f(x)=4$ but $f(0)=-2 . \quad \lim _{x \rightarrow 1^{-}} f(x)=-2$ but $f(1)=3$. So, our final answer is that the desired condition is satisfied at $x=-3,-2$, and -1 .
For c.-g., use the graph of the function $f(x)$ to evaluate each of the expressions below. If a limit diverges to ∞ or $-\infty$ or if the limit does not exist for any other reason, write "DNE." If there is not enough information to evaluate the expression, write "Not enough information."
c. [2 points] $\lim _{x \rightarrow 0} f(x)$

Solution: Observe that $\lim _{x \rightarrow 0^{-}} f(x)=4$ and $\lim _{x \rightarrow 0^{+}} f(x)=-2$. Since the left- and righthand limits are different, we see that $\lim _{x \rightarrow 0} f(x)$ does not exist, so we write "DNE."
d. [2 points] $\lim _{x \rightarrow 1} f(x)$

Solution: On either side of $x=1$, the function $f(x)$ is constant and equal to -2 . Therefore $\lim _{x \rightarrow 1} f(x)=-2$.
e. $[2$ points $] \lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}$

Solution: We recognize this expression as $f^{\prime}(-1)$. Since the function $f(x)$ is linear on the interval $(-2,0)$, we see that $f^{\prime}(-1)$ is the slope of this line. We calculate the slope to be $(4-1) /(0-(-2))=3 / 2$.
f. [2 points] $\lim _{x \rightarrow 3^{+}} 4 f(x-5)-1$

Solution: As x approaches 3 from the right, $x-5$ approaches 2 from the right. This means that $f(x-5)$ approaches 1 from above, and therefore $4 f(x-5)-1$ approaches $4(1)-1=3$.
g. [2 points] $\lim _{x \rightarrow-3} f(f(x))$

Solution: As x approaches -3 from either side, the value $y=f(x)$ approaches 0 from negative values only. Therefore $\lim _{x \rightarrow-3} f(f(x))=\lim _{y \rightarrow 0^{-}} f(y)=4$.

