2. [12 points]
a. [6 points] Consider the given table of values for the function $j(u)$.

u	1	2	3
$j(u)$	6		54

i. Supposing that $j(u)$ is a linear function, fill in the missing entry in the table. Show your work.

Solution: Since $j(u)$ is linear, its output increases by a constant amount m every time we increment u by 1. The table tells us that when we increment u twice, the output increases by $m+m=54-6=48$. Therefore $m=24$, and so $j(2)=j(1)+m=6+24=30$.
ii. Supposing that $j(u)$ is an exponential function, fill in the missing entry in the table.

Show your work.
Solution: Since $j(u)$ is exponential, its output increases by a constant multiplicative factor a every time we increment u by 1 . The table tells us that when we increment u twice, the output increases by a factor of $a \cdot a=54 / 6=9$. Therefore $a=3$, and so $j(2)=j(1) \cdot a=6 \cdot 3=18$.
b. [6 points] A radioactive substance decays exponentially in such a way that, if you have some amount of it, then after 15.2 days you will only have a third as much of it remaining. If I have 110 grams of this substance today, how long will I have to wait until I only have 3 grams remaining? Show every step of your work, and give your final answer in exact form.

Solution: Let $r(t)$ denote the amount of the substance that I will have, in grams, t days after today. We are told that the substance decays exponentially, so there are constants P_{0} and a such that $r(t)=P_{0} a^{t}$. With this setup, P_{0} is the amount of the substance, in grams, that I start with, so $P_{0}=110$. We are told that after 15.2 days, I will have a third of my substance remaining, which gives us the equation

$$
\begin{aligned}
110 / 3 & =110 \cdot a^{15.2} \\
1 / 3 & =a^{15.2} \\
(1 / 3)^{1 / 15.2} & =a
\end{aligned}
$$

To calculate the time t at which I will have 3 grams remaining, we solve the equation

$$
\begin{aligned}
3 & =P_{0} a^{t} \\
3 & =110 \cdot\left((1 / 3)^{1 / 15.2}\right)^{t} \\
3 / 110 & =\left((1 / 3)^{1 / 15.2}\right)^{t} \\
\ln (3 / 110) & =t \ln \left((1 / 3)^{1 / 15.2}\right) \\
\frac{\ln (3 / 110)}{\ln \left((1 / 3)^{1 / 15.2}\right)} & =t \\
\frac{15.2 \ln (3 / 110)}{\ln (1 / 3)} & =t
\end{aligned}
$$

