3. [11 points] A pilot is flying in an air show. Let $A(t)$ be her altitude, in feet (ft) above the ground, t seconds (sec) after takeoff. Some values of $A(t)$ are shown in the table below, and there is one missing value, denoted by "?".

t	5	22	23	60	60.1	70
$A(t)$	300	1100	1400	400	$?$	1200

a. [3 points] Use the table to give the best possible estimate of $A^{\prime}(22)$. Make sure to include the relevant units as part of your answer.

Solution: The best possible estimate of $A^{\prime}(22)$ is obtained when we calculate the average rate of change over the smallest available interval containing $t=22$. In this case, the smallest available interval is [22,23], and so we compute:

$$
\begin{aligned}
A^{\prime}(22) & \approx \text { Average rate of change over }[22,23] \\
& =\frac{1400-1100}{23-22} \\
& =\frac{300}{1} \\
& =300 \text { feet per second. }
\end{aligned}
$$

b. [3 points] Suppose that $A^{\prime}(60)=550$. Give an approximate value for the missing entry in the table. Make sure to include the relevant units as part of your answer.

Solution: The equation $A^{\prime}(60)=550$ means that, when ε is a small number, we have $A(60+\varepsilon) \approx 400+550 \cdot \varepsilon$. The missing entry in the table is at $t=60.1$, so here we may take ε to be the number 0.1.

Then the equation $A^{\prime}(60)=550$ tells us that the missing entry $A(60.1)$ in the table is approximately $A(60)+550 \cdot 0.1=400+55=455$ feet.
c. [5 points] The pilot flies in a different air show a week later. Let $B(t)$ be her altitude, in feet (ft) above the ground, t seconds (sec) after takeoff. A graph of $B(t)$ is shown below. (Reduced scale for solutions)

Let the quantities I-V be defined as follows:
I. The number 0 .
II. The pilot's average velocity, in $\mathrm{ft} / \mathrm{sec}$, between $t=15$ and $t=50$.
III. The pilot's instantaneous velocity, in $\mathrm{ft} / \mathrm{sec}$, at $t=55$.
IV. The pilot's average velocity, in $\mathrm{ft} / \mathrm{sec}$, between $t=50$ and $t=90$.

V . The pilot's instantaneous velocity, in $\mathrm{ft} / \mathrm{sec}$, at $t=85$.
List the quantities I-V in increasing order.
Solution: Since $B(15)<B(50)$ and $B^{\prime}(85)>0$, we see that II and V are greater than I. Since $B(50)>B(90)$ and $B^{\prime}(55)<0$, we see that III and IV are less than I. Therefore our ordering is

$$
(\text { III or IV })<(\text { III or IV })<\mathrm{I}<(\text { II or } \mathrm{V})<(\text { II or } \mathrm{V}) \text {. }
$$

Glancing at the graph, it appears that II is a shallow positive slope, while V is a steep positive slope. It also appears that IV is a shallow negative slope, while III is a steep negative slope. This suggests the answer

$$
\mathrm{III}<\mathrm{IV}<\mathrm{I}<\mathrm{II}<\mathrm{V}
$$

For the purpose of these solutions, we will verify this answer more carefully, just to be sure.
We now decide whether II or V is greater. Observe that $B(15)$ is about 750 , and $B(50)$ is a little less than 900 . Therefore the pilot's average velocity between $t=15$ and $t=50$ (option II) is no more than $\frac{900-750}{50-15}=\frac{150}{35}<\frac{150}{30}=5 \mathrm{ft} / \mathrm{sec}$. Observe that $B^{\prime}(85)$ (option V) appears very large, almost certainly greater than 5 . Indeed, we see that it must be larger than the pilot's average velocity between $t=80$ and $t=90$. Since $B(80)$ is less than 150 and $B(90)$ is greater than 600 , this average velocity is greater than $\frac{600-150}{90-80}=\frac{450}{10}=45 \mathrm{ft} / \mathrm{sec}$. Since $45>5$, we conclude that V is greater than II.

We now decide whether III or IV is greater. Observe that $B(50)$ is a little less than 900 and $B(90)$ is more than 600 . Therefore the pilot's average velocity between $t=50$ and $t=90$ (option IV) is greater than $\frac{600-900}{90-50}=\frac{-300}{40}=\frac{-15}{2}>-8 \mathrm{ft} / \mathrm{sec}$. Observe that $B^{\prime}(55)$ (option III) appears likely to be much less than -8 . Indeed, we see that it must be less than the pilot's average velocity between $t=50$ and $t=60$. Since $B(50)$ is greater than 750 and $B(60)$ is less than 150 , this average velocity is less than $\frac{150-750}{60-50}=\frac{-600}{10}=-60 \mathrm{ft} / \mathrm{sec}$. Since $-60<-8$, we conclude that III is less than IV.

