6. [9 points] A metal bar is unevenly heated, and a laser thermometer is used to measure its temperature at various points. Let $T(q)$ be the temperature of the bar, in degrees Celsius, q feet from its leftmost end. Some values of $T(q)$ are shown in the table below.

q	1	2	3	4	5	6	7	8	9
$T(q)$	40	70	90	80	60	90	130	100	60

a. [3 points] For which of the following intervals of q-values might the function $T^{\prime}(q)$ be positive for the entire interval? Give your answer as a list of one or more intervals, or write none.

$$
\begin{equation*}
(1,3) \tag{4,6}
\end{equation*}
$$

$$
\begin{equation*}
(5,7) \tag{7,9}
\end{equation*}
$$

Solution: The output $T(q)$ increases from $q=1$ to $q=2$, and from $q=2$ to $q=3$, and so it is possible for the derivative $T^{\prime}(q)$ to always be positive on $(1,3)$.
The output $T(q)$ decreases from $q=4$ to $q=5$, and so it is not possible for the derivative $T^{\prime}(q)$ to always be positive on $(4,6)$.

The output $T(q)$ increases from $q=5$ to $q=6$, and from $q=6$ to $q=7$, and so it is possible for the derivative $T^{\prime}(q)$ to always be positive on $(5,7)$.
The output $T(q)$ decreases from $q=7$ to $q=8$, and from $q=8$ to $q=9$, and so it is not possible for the derivative $T^{\prime}(q)$ to always be positive on $(7,9)$.
b. [3 points] For which of the following intervals of q-values might the function $T(q)$ be concave up for the entire interval? Give your answer as a list of one or more intervals, or write none.

$$
\begin{equation*}
(1,3) \tag{7,9}
\end{equation*}
$$

$$
(4,6) \quad(5,7)
$$

Solution: From $q=1$ to $q=2$, the function $T(q)$ increases by 30 , but from $q=2$ to $q=3$, it only increases by 20 . If $T(q)$ were concave up on $(1,3)$, this second increase would have been greater than 30. Therefore $T(q)$ is not concave up on $(1,3)$.
From $q=4$ to $q=5$, the function $T(q)$ decreases, and from $q=5$ to $q=6$, the function $T(q)$ increases. A concave up function has an increasing first derivative, and these two observations do not preclude an increasing first derivative. Therefore $T(q)$ might be concave up on $(4,6)$.
From $q=5$ to $q=6$, the function $T(q)$ increases by 30 , and from $q=6$ to $q=7$, it increases by 40. A concave up function has an increasing first derivative, and these two observations do not preclude an increasing first derivative. Therefore $T(q)$ might be concave up on $(5,7)$.
From $q=7$ to $q=8$, the function $T(q)$ decreases by 30 , but from $q=8$ to $q=9$, the function $T(q)$ decreases by 40 . If $T(q)$ were concave up on $(7,9)$, this second decrease would have been less than 30 . Therefore $T(q)$ is not concave up on $(7,9)$.
c. [3 points] What is the average rate of change of $T(q)$ on the interval $2 \leq q \leq 7$? Include units in your answer.
Solution: The average rate of change of $T(q)$ on the interval $2 \leq q \leq 7$ is

$$
\frac{T(7)-T(2)}{7-2}=\frac{130-70}{5}=\frac{60}{5}=12^{\circ} \mathrm{C} / \mathrm{ft} .
$$

