9. [7 points]

We consider formulas for four different rational functions. Let the formulas I-IV be defined as follows:
I. $\frac{x^{5}(x+1)(x-2)}{x+2}$
III. $\frac{(x-9)(x+1)}{x-8}$
II. $\frac{x^{4}(x+1)(x-2)(x-8)}{(x-9)(x-3)}$
IV. $\frac{(x-3)(x+3)}{x-9}$

We describe three functions. Match each function below with the formula I-IV that could possibly be the formula for that function. Each function below matches with exactly one of the formulas above.
A. The function $g(x)$ is such that $\frac{g(x)}{x^{5}}$ diverges to ∞ as $x \rightarrow \infty$.
B. The function $h(x)$ is such that the function

$$
S(t)= \begin{cases}\sin (2 \pi x) & x<3 \\ h(x) & x \geq 3\end{cases}
$$

is continuous at $x=3$.
C. The function $f(x)$ is such that $f(x+3)$ has a vertical asymptote at $x=5$.

Solution: Description A tells us that the numerator of $g(x)$ must have degree at least 6 greater than the degree of its denominator. In Formula I, the difference in degrees between numerator and denominator is $7-1=6$, and so already we see that A matches with I. To double check, we see that the difference in degrees for Formula II is $7-2=5$, for III is $2-1=1$, and for IV is $2-1=1$. Therefore Formula I really is the only possible match for Description A.
Description B tells us that $h(3)$ must be equal to $\lim _{x \rightarrow 3^{-}} \sin (2 \pi x)$. But $\sin (2 \pi x)$ is always continuous, so this limit is equal to $\sin (2 \pi \cdot 3)=0$. We therefore want a formula that evaluates to 0 at $x=3$. The numerators of our rational functions are all factored into linear factors, and so this means we must choose the rational function with $(x-3)$ in its numerator. The only option is Formula IV.

Description C tells us that, when we horizontally shift $f(x)$ to the left by 3 , there is a vertical asymptote at $x=5$ for the shifted version of our function. Therefore $f(x)$ itself must have a vertical asymptote at $x=8$. The denominators of our rational functions are all factored into linear factors, and so this means we must choose the rational function with $(x-8)$ in its denominator. The only option is Formula III.

