2. [8 points] Below is a portion of a graph of an even function $w(x)$. Note that $w(x)$ has a vertical asymptote at $x=-1$, has a horizontal asymptote at $y=-2.5$, and is linear on $[-5,-4]$.

Evaluate each of the given quantities. If the value does not represent a real number (including the case of limits that diverge to ∞ and $-\infty$), write dne. You do not need to show work in this problem. Give your answers in exact form.
a. $[1$ point $] \lim _{p \rightarrow-4^{+}} w(p)$

Answer: \qquad
b. [1 point] $\lim _{x \rightarrow-8} w(x)$

Answer: \qquad
c. [2 points] $\lim _{h \rightarrow-1} w(-2+h)$

Solution: For h close to but not equal to -1 , the quantity $-2+h$ is close to but not equal to -3 . So, as $h \rightarrow-1$, we see from the graph that the value of $w(-2+h)$ approaches 3 .

Answer:
3
d. [2 points] $\lim _{x \rightarrow \infty} w(x)$

Solution: Since w is an even function, the graph of w is symmetric across the vertical axis, so there is a horizontal asymptote on the right at $y=-2.5$. Alternatively, since w is even, we know $w(x)=w(-x)$ for all x in the domain of w, so $\lim _{x \rightarrow \infty} w(x)=\lim _{x \rightarrow \infty} w(-x)=-2.5$.

Answer: \qquad
e. $[2$ points $] \lim _{h \rightarrow 0}\left((3-h)^{2}+\frac{w(-4.5+h)-w(-4.5)}{h}\right)$

Solution:

$$
\lim _{h \rightarrow 0}\left((3-h)^{2}+\frac{w(-4.5+h)-w(-4.5)}{h}\right)=\lim _{h \rightarrow 0}\left((3-h)^{2}\right)+w^{\prime}(-4.5)=(3-0)^{2}+5=14 \text {. }
$$

