5. [8 points] The function $k(x)$ is given by the following formula, where A and B are positive constants:

$$
k(x)= \begin{cases}3+e^{x-1} & x \leq 1 \\ \frac{2 x^{2}+5 x+1}{A x^{2}+1} & 1<x<2 \\ \ln (B x)+3 & x \geq 2\end{cases}
$$

a. [2 points] Evaluate each of the expressions below. If a limit does not exist, including if it diverges to ∞ or $-\infty$, write DNE. You do not need to show work.

$$
\begin{aligned}
& \text { Solution: } \\
& \lim _{x \rightarrow-\infty} k(x)=\lim _{x \rightarrow-\infty}\left(3+e^{x-1}\right)=3
\end{aligned}
$$

Answer:

Solution:

$\lim _{x \rightarrow \infty} k(x)=\lim _{x \rightarrow \infty}(\ln (B x)+3)=\infty(\mathrm{DNE})$
b. [2 points] Find all horizontal and vertical asymptotes of $k(x)$ or write NONE if there are none.

Solution: By part a., the line $y=3$ is a horizontal asymptote, and there are no others.

- The first piece of $k(x)$ has no vertical asymptotes since it is a shifted exponential.
- The rational piece of $k(x)$ has denominator that is always positive so there are no vertical asymptotes coming from that piece either.
- The function $\ln (B x)+3$ has a vertical asymptote at $x=0$, but that value of x is not part of the relevant domain for the third piece of $k(x)$.
Hence, $k(x)$ has no vertical asymptotes.

Answer: Horizontal: $\quad y=3$
Vertical: \qquad
c. [4 points] Find all values of A and B so that

- $k(x)$ is continuous at $x=1$ and also
- $k(x)$ is continuous at $x=2$.

Write NONE if there are no such values. Show your work.
Solution: For continuity at $x=1$, we consider left and right limits at 1 .
Note that $\lim _{x \rightarrow 1^{-}} k(x)=4=k(1)$ and $\lim _{x \rightarrow 1^{+}} k(x)=\frac{8}{A+1}$.
For continuity at $x=1$ we therefore need $4=\frac{8}{A+1}$ which gives $A=1$.
For continuity at $x=2$, we consider left and right limits at 2 .
Note that $\lim _{x \rightarrow 2^{-}} k(x)=\frac{8+10+1}{4 A+1}=\frac{19}{4 A+1}$ and $\lim _{x \rightarrow 2^{+}} k(x)=\ln (2 B)+3=k(2)$.
We found above that $A=1$, so $\frac{19}{4 A+1}=\frac{19}{5}=3.8$.
For continuity at $x=2$ we therefore need $\frac{19}{5}=\ln (2 B)+3$, giving $\ln (2 B)=\frac{4}{5}$. By definition of the natural logarithm (or exponentiation), we find $2 B=e^{4 / 5}$ and $B=\frac{1}{2} e^{4 / 5}=0.5 e^{0.8}$.

Answer: $A=$ \qquad and $B=$

$$
\frac{1}{2} e^{4 / 5}=0.5 e^{0.8}
$$

