3. [5 points] Suppose $f(t)$ is a differentiable function whose tangent line at the point $t=1$ is given by the linear function $L(t)$. To the right is a table consisting of some values of $f(t)$ and $L(t)$.

t	-1	1	3	5
$f(t)$	5	2	2	9
$L(t)$	3	2	1	0

a. [1 point] Find the average rate of change of $f(t)$ on the interval $[-1,5]$.

Answer:
b. [1 point] Find the instantaneous rate of change of $f(t)$ at $t=1$.

Answer: \qquad
c. [1 point] Using the table, find the best possible estimate of $f^{\prime}(-1)$.

Answer: \qquad
d. [2 points] The function L is invertible, and its inverse function L^{-1} is also linear. Find numbers m and b such that $L^{-1}(x)=m x+b$.

Answer: $m=\ldots$ and $b=$
4. [5 points] Let $f(x), g(x)$, and $h(x)$ be the functions defined for all real numbers by

$$
f(x)=2^{c+1} c^{x}, \quad g(x)=e^{c} \cos (c x), \quad \text { and } \quad h(x)= \begin{cases}f(x) & x \leq 0 \\ g(x) & x>0\end{cases}
$$

where c is a nonzero constant. In each part below, find an exact value for the constant c so that the given condition holds. (Your value for the constant c may be different in each part.)
a. [1 point] The function $f(x)$ has a continuous decay rate of 15%.

Answer:
b. [1 point] The function $g(x)$ has a period of 3 .

Answer:

c. [3 points] The function $h(x)$ is continuous at zero.

