3. [5 points] Suppose f(t) is a differentiable function whose tangent line at the point t = 1 is given by the linear function L(t). To the right is a table consisting of some values of f(t) and L(t).

t	-1	1	3	5
f(t)	5	2	2	9
L(t)	3	2	1	0

a. [1 point] Find the average rate of change of f(t) on the interval [-1, 5].

Answer:

b. [1 point] Find the instantaneous rate of change of f(t) at t = 1.

Answer:

c. [1 point] Using the table, find the best possible estimate of f'(-1).

Answer:

d. [2 points] The function L is invertible, and its inverse function L^{-1} is also linear. Find numbers m and b such that $L^{-1}(x) = mx + b$.

Answer: m =_____ and b =_____

4. [5 points] Let f(x), g(x), and h(x) be the functions defined for all real numbers by

$$f(x) = 2^{c+1}c^x$$
, $g(x) = e^c \cos(cx)$, and $h(x) = \begin{cases} f(x) & x \le 0 \\ g(x) & x > 0 \end{cases}$

where c is a nonzero constant. In each part below, find an exact value for the constant c so that the given condition holds. (Your value for the constant c may be different in each part.)

a. [1 point] The function f(x) has a continuous decay rate of 15%.

Answer:

b. [1 point] The function g(x) has a period of 3.

Answer:

c. [3 points] The function h(x) is continuous at zero.

Answer: