5. [10 points] We tracked the Cheshire Kid far out in the desert as he attempted to find buried gold. After checking his map at time $t=0$, the Cheshire Kid moved only in the north/south direction, with the function $D(t)$ giving his position in kilometers north of his starting point t hours after he checked his map at time $t=0$. We now consider the following graph of the derivative $D^{\prime}(t)$, along with a table to the left that shows a few values of $D(t)$.

a. [2 points] At time $t=2$, is the Cheshire Kid north or south of his position at $t=1$? By how much? Give your answer by circling NORTH or SOUTH and filling in the appropriate number of kilometers in the sentence below:

At $t=2$, he is \qquad kilometers (NORTH / SOUTH) of his position at $t=1$.
b. [2 points] Find all times t for $0<t<4$ when the Cheshire Kid is traveling at his maximum speed. Give your answer as value(s) and/or interval(s) of t.

Answer:

c. [2 points] Rank the points $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$, and \mathcal{E} (as shown on the graph) in order of descending velocity, i.e., starting with the point where the Cheshire Kid's velocity is greatest and ending with the point where it is least.

Answers:

\qquad
\qquad
\qquad
\qquad , \qquad
d. [2 points] Find the average velocity of the Cheshire Kid over the time interval [1, 2]. Include units.

Answer:

\qquad
e. [2 points] Circle all of the following intervals over which the Cheshire Kid is always traveling south:

$$
(0,0.5) \quad(1.5,2) \quad(2,2.5) \quad(2.5,3) \quad(3.5,4) \quad \text { NONE OF THESE }
$$

