3. [5 points] Suppose $f(t)$ is a differentiable function whose tangent line at the point $t=1$ is given by the linear function $L(t)$. To the right is a table consisting of some values of $f(t)$ and $L(t)$.

t	-1	1	3	5
$f(t)$	5	2	2	9
$L(t)$	3	2	1	0

a. [1 point] Find the average rate of change of $f(t)$ on the interval $[-1,5]$.

$$
\text { Solution: } \quad \frac{f(5)-f(-1)}{5-(-1)}=\frac{9-5}{5-(-1)}=\frac{4}{6}=\frac{2}{3}
$$

Answer: \qquad
b. [1 point] Find the instantaneous rate of change of $f(t)$ at $t=1$.

Solution: This is equal to the slope of the tangent line $L(t)$
at $t=1$, which is $\frac{L(1)-L(-1)}{1-(-1)}=\frac{2-3}{2}=\frac{-1}{2}$
Answer: \qquad
c. [1 point] Using the table, find the best possible estimate of $f^{\prime}(-1)$.

$$
\text { Solution: } \quad \frac{f(1)-f(-1)}{1-(-1)}=\frac{2-5}{1-(-1)}=\frac{-3}{2}
$$

Answer: \qquad
d. [2 points] The function L is invertible, and its inverse function L^{-1} is also linear. Find numbers m and b such that $L^{-1}(x)=m x+b$.

Solution: We have $L(t)=-\frac{1}{2} t+\frac{5}{2}$. So we solve the equation $x=-\frac{1}{2} y+\frac{5}{2}$ for y, which gives $y=-2 x+5$.
Answer: $m=\ldots-2 \quad$ and $b=\square \quad 5$

