- **3.** [5 points] Suppose f(t) is a differentiable function whose tangent line at the point t = 1 is given by the linear function L(t). To the right is a table consisting of some values of f(t) and L(t).
 - **a**. [1 point] Find the average rate of change of f(t) on the interval [-1, 5].

Solution:
$$\frac{f(5) - f(-1)}{5 - (-1)} = \frac{9 - 5}{5 - (-1)} = \frac{4}{6} = \frac{2}{3}$$

b. [1 point] Find the instantaneous rate of change of f(t) at t = 1.

c. [1 point] Using the table, find the best possible estimate of f'(-1).

Solution:
$$\frac{f(1) - f(-1)}{1 - (-1)} = \frac{2 - 5}{1 - (-1)} = \frac{-3}{2}$$

d. [2 points] The function L is invertible, and its inverse function L^{-1} is also linear. Find numbers m and b such that $L^{-1}(x) = mx + b$.

Solution: We have $L(t) = -\frac{1}{2}t + \frac{5}{2}$. So we solve the equation $x = -\frac{1}{2}y + \frac{5}{2}$ for y, which gives y = -2x + 5.

Answer: $m = ___2$ and $b = __5$

t	-1	1	3	5
f(t)	5	2	2	9
L(t)	3	2	1	0

Answer: 2/3

Answer: -3/2