4. [5 points] Let $f(x), g(x)$, and $h(x)$ be the functions defined for all real numbers by

$$
f(x)=2^{c+1} c^{x}, \quad g(x)=e^{c} \cos (c x), \quad \text { and } \quad h(x)= \begin{cases}f(x) & x \leq 0 \\ g(x) & x>0\end{cases}
$$

where c is a nonzero constant. In each part below, find an exact value for the constant c so that the given condition holds. (Your value for the constant c may be different in each part.)
a. [1 point] The function $f(x)$ has a continuous decay rate of 15%.

Solution: If we write an exponential function in the form $P=P_{0} e^{-k x}$ with $k>0$, then k is its continuous decay rate. So in order for $2^{c+1} c^{x}=2^{c+1} e^{(\ln c) x}$ to have a continuous decay rate of 15%, we want $\ln c=-.15$, so $c=e^{-.15}$.

Answer: \qquad
b. [1 point] The function $g(x)$ has a period of 3 .

Solution: The cosine function has a period of 2π, so $g(x)$ has a period of $\frac{2 \pi}{c}$. So we solve $3=\frac{2 \pi}{c}$ to get $c=\frac{2 \pi}{3}$.

c. [3 points] The function $h(x)$ is continuous at zero.

Solution: Since $f(x)$ and $g(x)$ are both continuous, in order for $h(x)$ to be continuous at zero we need $f(0)=g(0)$. Since $f(0)=2^{c+1} c^{0}=2^{c+1}$ and $g(0)=e^{c} \cos (0)=e^{c}$, this means we need $2^{c+1}=e^{c}$. Solving this for c gives

$$
c=\ln e^{c}=\ln \left(2^{c+1}\right)=(c+1) \ln 2=c \ln 2+\ln 2 .
$$

Thus $c(1-\ln 2)=c-c \ln 2=\ln 2$, so $c=\frac{\ln 2}{1-\ln 2}$.

Answer:

$$
\frac{1-\ln 2}{\ln 2}
$$

