7. [10 points] Given below is a portion of the graph of r'(x), the <u>derivative</u> of the continuous function r(x), along with a table of some values of r(x). Note that r'(x) has a vertical asymptote at x = 2. Use the graph and the table to answer the questions below. You do not need to show work.

x	-3	-2	1	2
r(x)	6.5	7	4	??

a. [1 point] Circle all of the x values below at which the function r'(x) is <u>not</u> continuous.

$$x = -2$$
 $x = 0$ $x = 1$ NONE OF THESE

- **b**. [6 points] Find the **exact** numerical value of each expression below, if possible. For any values that do not exist, including if they are limits that diverge to $\pm \infty$, write DNE.
 - *i.* $\lim_{x \to 0} r'(x) = \underline{-2}$ *iv.* $\lim_{x \to -1} r'(2x+3) = \underline{DNE}$
 - *ii.* $\lim_{x \to 1^{-}} r'(x) = \underline{-1}$ *v.* $\lim_{h \to 0} \frac{r'(-4+h) r'(-4)}{h} = \underline{-3/2}$
 - *iii.* $\lim_{x \to 2^+} \frac{1}{r'(x)} = \underline{\qquad} 0$ *vi.* $\lim_{t \to 0} \frac{r(-2+t) 7}{t} = \underline{\qquad} 2$
- c. [1 point] Given that r(2) is one of the five values below, determine which one it is by circling the one correct answer.

$$\frac{10}{3}$$
 4 5 $\frac{16}{3}$ 4 + 2^{1/3}

d. [2 points] Find an equation of the line tangent to the graph of r(x) at x = -3.

Solution: y = r(-3) + r'(-3)(x+3) = 6.5 + (-1)(x+3) = 3.5 - x.

Answer: y = (6.5 - (x + 3)), or y = 3.5 - x