6. (15 points)
a) (6 pts) Find the equation of the tangent line of $f(x)=\tan (x)$ at the point $x=\pi / 4$.

$$
f^{\prime}(x)=\frac{1}{\cos ^{2} x} ; f^{\prime}(\pi / 4)=\frac{1}{(\sqrt{2} / 2)^{2}}=2
$$

Tangent line has equation
b) (2 pts) Use part a) to estimate $\tan (3 / 4)$.

$$
\begin{aligned}
& y=\tan \left(\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right) \\
& y=1+2\left(x-\frac{\pi}{4}\right)
\end{aligned}
$$

$$
\tan \left(\frac{3}{4}\right) \approx 1+2\left(\frac{3}{4}-\frac{\pi}{4}\right)=2.5-\frac{\pi}{2}
$$

c) (4 pts) Circle True) False: The actual value of $\tan (3 / 4)$ is greater than your estimation from the previous part. (Briefly comment on the shape of the graph to justify your answer.)
Comment: The graph of $y=\tan x$ looks

Cuke this

d) (3 pts) Use part a) to estimate $\tan ^{-1}(0.8)$

$$
x=\tan ^{-1}(0.8)
$$

In particular, it is concave 留 for $0<x<\pi / 2$. The tangent line lies blow the graph for such x.
implies $\tan x=0.8$
But $\quad \tan x \approx 1+2\left(x-\frac{\pi}{4}\right)$,
so we can solve $0.8=1+2\left(x-\frac{\pi}{4}\right)$
to get $x=\frac{\pi}{4}-0.1$ as an estimation of $\tan ^{-1}(0.8)$.

