3. (9 points)[Show your work.] Use the information given in the table to find $h^{\prime}(4)$ if:

x	1	2	3	4
$f(x)$	2	1	4	2
$f^{\prime}(x)$	3	2	-1	2
$g(x)$	4	2	1	3
$g^{\prime}(x)$	3	2	2	-3

$$
\rightarrow h^{\prime}(x)=\frac{g^{\prime}(x) f(x)-g(x) f^{\prime}(x)}{(f(x))^{2}} \quad h^{\prime}(4)=-3
$$

(i) $h(x)=g(x) / f(x)$;

$$
h^{\prime}(4)=\frac{(-3)(0)-3(0)}{4}=\frac{-12}{4}=
$$

(ii) $h(x)=f(\sqrt{x})$;
$h(x)=f^{\prime}(\sqrt{x}) \cdot \frac{1}{2} x^{-1 / 2}=$

$$
h^{\prime}(4)=f(0) \cdot \frac{1}{4}=2\left(\frac{1}{4}\right)
$$

(iii) $h(x)=\ln (g(x))$;
(ii) $h(x)=f(\sqrt{x})$;

$$
\begin{aligned}
& h^{\prime}(x)=\frac{1}{g(x)} \cdot g^{\prime}(x) \\
& h^{\prime}(4)=\frac{1}{3}(-3)=-1
\end{aligned}
$$

4. (9 points) On what interval(s) is the function $f(x)=e^{-x^{4}}$ increasing and concave down? [Show your work.]

$$
\begin{aligned}
& f(x)=-4 x^{3} e^{-x^{4}} \\
& \quad f^{\prime}(x)>0 \text { when } x<0 \\
& f^{\prime \prime}(x)=-12 x^{2} e^{-x^{4}}+\left(-4 x^{3}\right) e^{-x^{4}}\left(-4 x^{3}\right) \\
&= e^{-x^{4}}\left(4 x^{2}\right)\left(4 x^{4}-3\right) \\
& f^{\prime \prime}(x)<0 \text { then } 4 x^{4}<3 \rightarrow|x|<\sqrt[4]{\frac{3}{4}} \\
& x^{4}<\frac{3}{4} \rightarrow \left\lvert\, x-\sqrt[4]{\frac{3}{4}}<x<\sqrt{\frac{5}{4}}\right.
\end{aligned}
$$

