9. (14 points) (a) Find the local linearization of the function $f(x)=\ln (1+x)$ near the point $x=0$. Show your work.

$$
\begin{gathered}
f^{\prime}(x)=1+x \\
f(x) \approx 0+x=x \\
(\operatorname{sen} x=0)
\end{gathered}
$$

(b) Is the approximation to $\ln (1+x)$ given by the local linearization an underestimate or overestimate? Explain why?

$$
f(0)=0 \quad f(0)=1
$$

$$
\text { overectexiate nance } A \text { is }
$$

concent down
(c) We saw in Chapter 1 of the text that P_{0} dollars invested at a rate of $r \%$ per year grows to be
worth $P_{0}(1+r / 100)^{t}$ dollars after t years. Compute, in terms of the interest rate r, how long it
(c) We saw in Chapter 1 of the text that P_{0} dollars invested at a rate of $r \%$ per year grows to be
worth $P_{0}(1+r / 100)^{t}$ dollars after t years. Compute, in terms of the interest rate r, how long it takes for the invested money to double in value?

$$
\left.z=\frac{\operatorname{Lnd}}{\ln \left(1+\frac{1}{100}\right.}\right)
$$

(d) A common rule of thumb used by investors is the "Rule of 70 " - money invested at a $r \%$ interest per year doubles in value in $70 / r$ years. Explain why this is a reasonable approximation to the actual doubling time.

$$
\begin{aligned}
& \text { double in agproninctal } \frac{h 2}{\frac{1}{10}} x \frac{\frac{69}{10}}{100}-\frac{69}{1} \\
& \text { sars, and } \frac{69}{17} \text { is class to } \frac{10}{12}
\end{aligned}
$$

$$
\begin{aligned}
& O R=Z_{2}\left(1+\frac{1}{6}\right)^{t} \\
& \ln a=\tan \left(1+\frac{1}{10}\right)
\end{aligned}
$$

