(5.) (12 points) Suppose p is a cubic polynomial function. Recall that this means that

$$
p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0},
$$

for some constants $a_{0}, a_{1}, a_{2}, a_{3}$, with $a_{0} \neq 0$.
(a) If $p(0)=1$, what is the value of a_{0} ?
(b) If $p^{\prime}(0)=1$, what is the value of a_{1} ?
(c) If $p^{\prime \prime}(0)=1$, what is the value of a_{2} ?
(d) If $p^{\prime \prime \prime}(0)=1$, what is the value of a_{3} ?
(e) Find the formula for a cubic polynomial function q that satisfies:

$$
q(0)=2, \quad q^{\prime}(0)=-1, \quad q^{\prime \prime}(0)=5, \quad q^{\prime \prime \prime}(0)=4
$$

[Note: You may use the information that you found in parts (a)-(d) to help you.]

