(2.) (9 points) Suppose you are given the following data about a differentiable function f :

- $f(3)=7$
- $f^{\prime}(3)=-4$.
(a) Find the local linearization of f near $x=3$.

$$
\begin{aligned}
f(x) & \approx f(3)+f^{\prime}(3)(x-3) \\
& =7-4(x-3)
\end{aligned}
$$

(b) Use linear approximation to estimate $f(3.1)$.

$$
\begin{aligned}
& f(3.1) \approx 7-4(3.1-3) \\
& \quad=7-4(0.1)=6.6
\end{aligned}
$$

(c) If $f^{\prime \prime}(3)<0$, do you expect your approximation to be an overestimate or underestimate for $f(3.1)$? Explain, using a sketch to support your answer. Include all relevant features of the function on your sketch-and express your answer in a sentence.

We expect our linear approximation to be an overestimate: since the graph is concave down near $x=3$, the tangent line there is above the graph near $x=3$.
[Note: A sketch should also be included here.]

