(4.) (12 points) Consider the function:

$$
f(x)=e^{\frac{-(a x)^{2}}{2}}, \quad \text { for } a \text { a positive constant. }
$$

The graph of $y=f(x)$ is the (in)famous "bell curve," which occurs frequently in statistics, and occasionally in heated political debates as well.
(a) Compute $f^{\prime \prime}(x)$. Show your work.

$$
\begin{gathered}
\text { Use the chain rule: } \\
f^{\prime}(x)=e^{\frac{-(a x)^{2}}{2}} \cdot(-(a x)) \cdot a=\left(-a^{2} x\right) \cdot e^{\frac{-(a x)^{2}}{2}}
\end{gathered}
$$

Now use the product rule, together with the previous line:

$$
\begin{gathered}
f^{\prime \prime}(x)=-a^{2} \cdot e^{\frac{-(a x)^{2}}{2}}+\left(-a^{2} x\right) \cdot\left[\left(-a^{2} x\right) \cdot e^{\frac{-(a x)^{2}}{2}}\right] \\
f^{\prime \prime}(x)=a^{2} e^{\frac{-(a x)^{2}}{2}}\left(a^{2} x^{2}-1\right)
\end{gathered}
$$

(b) For which value of a does the function f have an inflection point at $x=3$?

First let's find out where $f^{\prime \prime}(x)=0$, since this is a prerequisite for an inflection point. Since $e^{k}>0$ for any k and $a^{2} \neq 0$, we need only find out where $a^{2} x^{2}-1=0$. This happens when $x= \pm 1 / a$. If $x=3$ and a is positive, we must have $a=1 / 3$. To assure that this is an inflection point of f, we can check the sign of $f^{\prime \prime}(x)$ to the left and right of $x=3$. We see that $f^{\prime \prime}(x)$ is negative to the left of $x=3$ and positive to the right of $x=3$. Thus, the function changes from concave down to concave up at $x=3$ when $a=1 / 3$.

