(6.) (11 points) The equation $x^{2}-x y+y^{2}=3$ represents a "rotated ellipse"-that is, an ellipse whose axes are not parallel to the coordinate axes.
(a) Find the points at which this ellipse crosses the x-axis.

$$
\begin{gathered}
\text { Plug in } y=0 \text { and solve for } x: \\
\qquad \begin{array}{c}
x^{2}=3 \\
x=\sqrt{3},-\sqrt{3}
\end{array}
\end{gathered}
$$

(b) Show that the tangent lines at these points are parallel.

Find $\frac{d y}{d x}$, using implicit differentiation:

$$
\begin{gathered}
2 x-y-x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{y-2 x}{2 y-x}
\end{gathered}
$$

When $y=0, x= \pm \sqrt{3}$, we have $\frac{d y}{d x}=2$.
Since $\frac{d y}{d x}$ is the slope of the tangent line, we see that both lines have slope 2 , so they are parallel.
(c) Under what conditions on x (if any) would a tangent to the curve be vertical? Explain.

The tangent line is vertical when the denominator of $\frac{d y}{d x}$ is zero (and the numerator is not zero). This happens when $2 y=x$ (and $y \neq 2 x$).

