(7.) (10 points) For some positive constant C, a patient's temperature change, T, due to a dose, D, of a drug is given by

$$
T=f(D)=\left(\frac{C}{2}-\frac{D}{3}\right) D^{2}
$$

(a) What dosage maximizes the temperature change?

$$
f^{\prime}(D)=C D-D^{2}, f^{\prime \prime}(D)=C-2 D
$$

Critical point when $f^{\prime}(D)=0$, that is, when $D=0$ or $D=C$.
Since $f^{\prime \prime}(C)=-C<0$, the function $f(D)$ has a maximum when $D=C$.
Note that since $D=C$ is the only critical point for $D>0$, and it is a local maximum, it must also be a global maximum for $D>0$.
(Note that $f^{\prime \prime}(0)=C>0$, so $D=0$ is a minimum.)
(b) The sensitivity of the body to the drug is defined as $d T / d D$. What dosage maximizes sensitivity?

Critical point when $\left(\frac{d T}{d D}\right)^{\prime}=f^{\prime \prime}(D)=0$.
This happens when $D=C / 2$. Check that $\left(\frac{d T}{d D}\right)^{\prime \prime}(C / 2)=f^{\prime \prime \prime}(C / 2)=-2<0$, so this is indeed a maximum, and since this is the only critical point, $D=\frac{C}{2}$ is a global maximum.

