(8.) (14 points) Ship A is travelling due west toward Lighthouse Rock at a speed of 15 kilometers per hour ($\mathrm{km} / \mathrm{hr}$). Ship B is travelling due north away from Lighthouse Rock at a speed of $10 \mathrm{~km} / \mathrm{hr}$. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t, as shown in the figure below.

(a) Find the distance between Ship A and Ship B when $x=4 \mathrm{~km}$ and $y=3 \mathrm{~km}$.

$$
\text { distance }=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~km}
$$

(b) Find the rate of change of the distance between the two ships when $x=4 \mathrm{~km}$ and $y=3 \mathrm{~km}$.

$$
\begin{gathered}
D^{2}=x^{2}+y^{2} \text { where } D, x \text {, and } y \text { are all functions of } t . \\
\text { Thus, } 2 D\left(\frac{d D}{d t}\right)=2 x\left(\frac{d x}{d t}\right)+2 y\left(\frac{d y}{d t}\right) \\
\frac{d x}{d t}=-15 \frac{k m}{h r}, \text { and } \frac{d y}{d t}=10 \frac{k m}{h r}, \text { so: } \\
\frac{d D}{d t}=\frac{x\left(\frac{d y}{d t}\right)+y\left(\frac{d x}{d t}\right)}{D} \\
\text { When } x=4, y=3, \text { we have: } \\
\frac{d D}{d t}=\frac{(4)(-15)+(3)(10)}{5}=-6 \frac{k m}{h r}
\end{gathered}
$$

(c) Let θ be the angle shown in the figure. Find the rate of change of θ when $x=4 \mathrm{~km}$ and $y=3 \mathrm{~km}$.

Note that $\tan (\theta)=\frac{y}{x}$.
Thus, $\frac{1}{\cos ^{2}(\theta)}\left(\frac{d \theta}{d t}\right)=\frac{x\left(\frac{d y}{d t}\right)-y\left(\frac{d x}{d t}\right)}{x^{2}}$,

$$
\begin{gathered}
\frac{d \theta}{d t}=\frac{4(10)-3(-15)}{16}\left(\frac{16}{25}\right) \\
=\frac{85}{16}\left(\frac{16}{25}\right)=\frac{85}{25}=\frac{17}{5} \frac{\text { radians }}{\text { hour }} .
\end{gathered}
$$

