9. $(2+4+6$ points) You have been searching for the cotton candy vendor all day at the carnival. As you board the merry-go-round, you spot the candy man. Unfortunately, you are stuck on the merry-go-round. The vendor's stand is 30 feet from the center of the merry-go-round, and you begin your ride directly on the line of sight between the center of the merry-go-round and the vendor. The merry-go-round has a radius of 8 feet and is turning at a rate of $\frac{\pi}{60}$ radians/second.

(a) How long does it take for the merry-go-round to rotate $\frac{\pi}{6}$ radians?
(b) How far are you from the vendor when the merry-go-round has rotated $\frac{\pi}{6}$ radians? [The law of cosines may help here. It states that given a triangle of side lengths a, b, and c with angle θ between sides a and b, then one has $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$.]
(c) How fast is the distance between you and the vendor changing when the merry-go-round has rotated $\frac{\pi}{6}$ radians?
