6. (9+4 points) (a) Find the values of a and b so that the function $f(x)=a x e^{-b x}$ has a local maximum at the point $(3,12)$.

$$
f^{\prime}(x)=a b e^{-b x}-a b x e^{-b x}
$$

This is 0 when $a-a b x=0$. Therefore, either $a=0$ or $x=\frac{1}{b}$. If $a=0$, then $f(x)=0$ for all x so cannot have a maximum at $(3,12)$. So it must be that $x=\frac{1}{b}$. Since we want this maximum to occur at $x=3, b=\frac{1}{3}$. Now using that the y-value at the maximum is 12 , we have $12=3 a e^{-1}$. Therefore, $a=4 e$.
Now to see this is actually a maximum we must take the second derivative:

$$
f^{\prime \prime}(x)=-\frac{8}{3} e^{-\frac{1}{3} x+1}+\frac{4}{9} x e^{-\frac{1}{3} x+1}
$$

At $x=3, f^{\prime \prime}(3)=-\frac{4}{3}<0$. So we see this is a maximum of f.
(b) Does f have any inflection points for $x>0$? If so, for what value(s) of x ? If not, how do you know? [Use the function you found for part (a) here. Show your work or your reasoning.]

We have from part (a) that

$$
f^{\prime \prime}(x)=\left(-\frac{8}{3}+\frac{4}{9} x\right) e^{-\frac{1}{3} x+1}
$$

This is equal to 0 if and only if $x=6$. For $x<6$ we have $f^{\prime \prime}(x)<0$ and for $x>6$ we have $f^{\prime \prime}(x)>0$. Therefore $x=6$ is an inflection point.
7. (4+3+3 points) (a) Determine the tangent line approximation for $f(x)=\sin x$ near $x=\frac{\pi}{3}$ (i.e., 60°).

$$
\begin{gathered}
f\left(\frac{\pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{1}{2} . \\
f^{\prime}(x)=\cos x, \text { so } f^{\prime}\left(\frac{\pi}{3}\right)=\cos \left(\frac{\pi}{3}=\frac{\sqrt{3}}{2}\right) . \\
\text { Thus, near } x=\frac{\pi}{3}, f(x) \approx\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{2}\left(x-\frac{\pi}{3}\right) .
\end{gathered}
$$

(b) Use your answer from part (a) to give an approximation of $\sin \left(\frac{31}{90} \pi\right)$ without using your calculator. Note that $\frac{31}{90} \pi=62^{\circ}$. Show your work.

$$
\sin \left(\frac{31}{90} \pi\right) \approx\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{2}\left(\frac{31 \pi}{90}-\frac{\pi}{3}\right)=\left(\frac{\sqrt{3}}{2}\right)+\frac{1}{2}\left(\frac{\pi}{90}\right) .
$$

(c) Should your answer for part (b) be an over estimate or an under estimate? Justify your answer without indicating what $\sin \left(\frac{31}{90} \pi\right)$ is from your calculator.

The graph of $y=\sin x$ is concave down at $x=\frac{\pi}{3}$, so it is an overestimate as can easily been seen by sketching a graph of $\sin x$. [Or, could take the second derivative here and use the fact that $f^{\prime \prime}\left(\frac{\pi}{3}\right)<0$.]

