8. ($2+10$ points) Over the summer you are hired by a trucking company to help them improve operations. A truck driver is paid $\$ 12$ per hour for driving a truck over a 200 mile stretch of highway. The cost of driving the truck at an average velocity of v miles per hour is $(5+.568 v)$ dollars. The truck driver must drive between 40 mph and 70 mph .
(a) If the truck driver drives an average of v miles per hour for 200 miles, how long does he drive?

$$
t=\frac{200}{v} \text { hours }
$$

(b) At what average speed should the truck driver be told to drive in order to minimize the company's cost for the 200-mile trip? Note that the company's cost is the cost of paying the driver plus the cost of driving the truck.

The cost function is given by

$$
C(v)=12\left(\frac{200}{v}\right)+(5+0.568 v)
$$

Since we would like to minimize this function, we take the derivative and set it equal to 0 :

$$
\begin{aligned}
C^{\prime}(v) & =-\frac{2400}{v^{2}}+.568=0 \\
v & = \pm 65 \mathrm{mph} \text {-(but we can discard the negative.) }
\end{aligned}
$$

To see that this is a minimum, observe that $C^{\prime \prime}(65)>0$. Now we just need to check this against the endpoints. $C(65)=\$ 78.84, C(40)=\$ 87.72$, and $C(70)=\$ 79.04$. So the driver should be told to drive an average of 65 miles per hour in order to minimize the cost to the company.

