1. (16 points) Use the information given below to answer the following questions. Show work where appropriate.

x	0	1	2	3	4
f(x)	0.5	2	2.5	0	-4
f'(x)	1.5	0.5	-1	-3	-3.5

(a) If $g(x) = Ax^2$ for some constant A, find h'(2) where h(x) = g(x) + f(2x). Your answer may involve the constant A.

We have h'(x) = g'(x) + 2f'(2x) and therefore, h'(2) = g'(2) + 2f'(4). Also, g'(2) = 4A, so h'(2) = 4A - 7.

(b) Suppose $k(x) = 4^{f(x)}$. Find k'(1).

By the chain rule, $k'(x) = ln(4) \cdot f'(x) \cdot 4^{f(x)}$ and thus, $k'(1) = ln(4) \cdot f'(1) \cdot 4^{f(1)} = 16 \cdot 0.5 \cdot ln(4) = 8ln(4)$.

- (c) Suppose l(x) is a linear function of x, l(4) = 0, and l'(4) < f'(4). Which of the following is true about l(x)? (Circle all that apply; you need not justify your answer):
 - (i) l(x) > 0 for x > 4.
 - (ii) l(x) < 0 for x > 4.
 - (iii) l(x) is increasing for all x.
 - (iv) l(x) is decreasing for all x.

Since l'(4) < f'(4) = -3.5, we see that l(x) is decreasing. Since l(x) is a line it is decreasing for all x. Because l(4) = 0, it also follows that l(x) < 0 for x > 4, so (*ii*) and (*iv*) are correct.

(d) Suppose j(x) is an exponential function and that j(0) = 1. Let h(x) = j(x)f(x). If h'(0) = 7, find a formula for j(x).

Because j(x) is an exponential with j(0) = 1 we know $j(x) = b^x$ for some constant b. By the product rule, h'(x) = j'(x)f(x) + j(x)f'(x), so we have an equation $7 = j'(0) \cdot 0.5 + 1.5$. It follows that j'(0) = 11. But $j'(0) = \ln(b)b^0 = \ln(b)$. So $b = e^{11}$ and therefore $j(x) = e^{11x}$.