1. (16 points) Use the information given below to answer the following questions. Show work where appropriate.

x	0	1	2	3	4
$f(x)$	0.5	2	2.5	0	-4
$f^{\prime}(x)$	1.5	0.5	-1	-3	-3.5

(a) If $g(x)=A x^{2}$ for some constant A, find $h^{\prime}(2)$ where $h(x)=g(x)+f(2 x)$. Your answer may involve the constant A.

We have $h^{\prime}(x)=g^{\prime}(x)+2 f^{\prime}(2 x)$ and therefore, $h^{\prime}(2)=g^{\prime}(2)+2 f^{\prime}(4)$. Also, $g^{\prime}(2)=4 A$, so $h^{\prime}(2)=4 A-7$.
(b) Suppose $k(x)=4^{f(x)}$. Find $k^{\prime}(1)$.

By the chain rule, $k^{\prime}(x)=\ln (4) \cdot f^{\prime}(x) \cdot 4^{f(x)}$ and thus, $k^{\prime}(1)=\ln (4) \cdot f^{\prime}(1) \cdot 4^{f(1)}=16 \cdot 0.5 \cdot \ln (4)=$ $8 \ln (4)$.
(c) Suppose $l(x)$ is a linear function of $x, l(4)=0$, and $l^{\prime}(4)<f^{\prime}(4)$. Which of the following is true about $l(x)$? (Circle all that apply; you need not justify your answer):
(i) $l(x)>0$ for $x>4$.
(ii) $l(x)<0$ for $x>4$.
(iii) $l(x)$ is increasing for all x.
(iv) $l(x)$ is decreasing for all x.

Since $l^{\prime}(4)<f^{\prime}(4)=-3.5$, we see that $l(x)$ is decreasing. Since $l(x)$ is a line it is decreasing for all x. Because $l(4)=0$, it also follows that $l(x)<0$ for $x>4$, so (ii) and (iv) are correct.
(d) Suppose $j(x)$ is an exponential function and that $j(0)=1$. Let $h(x)=j(x) f(x)$. If $h^{\prime}(0)=7$, find a formula for $j(x)$.

Because $j(x)$ is an exponential with $j(0)=1$ we know $j(x)=b^{x}$ for some constant b. By the product rule, $h^{\prime}(x)=j^{\prime}(x) f(x)+j(x) f^{\prime}(x)$, so we have an equation $7=j^{\prime}(0) \cdot 0.5+1.5$. It follows that $j^{\prime}(0)=11$. But $j^{\prime}(0)=\ln (b) b^{0}=\ln (b)$. So $b=e^{11}$ and therefore $j(x)=e^{11 x}$.

