10. (12 points) You are in charge of ticket sales for the U-M/Ohio State football game next year. Fans can buy pre-season tickets prior to September 1, 2006 for $\$ 22.50$ each. After September 1st, the price will be $\$ 25$ per ticket. The $\$ 25$ tickets are called term tickets. It turns out that pre-season ticket sales are a good predictor of term ticket sales, though the relationship is somewhat complicated. The number of term tickets sold, $T(x)$ (in thousands), is a function of the number of pre-season tickets sold, x (in thousands), and is given by:

$$
T(x)=-0.02 x^{2}+1.9 x+8 .
$$

Assume that the maximum capacity of the stadium is 115,000 . What number of pre-season and term tickets should be sold to maximize revenue? Be sure to completely justify your answers-using techniques of calculus-(i.e., merely a graph or table will not suffice).

Since x is the number of pre-season tickets sold and $T(x)$ is the number of term tickets sold, the total revenue, $R(x)$, is given by

$$
R(x)=22.5 x+25 T(x) .
$$

We must find the global maximum of $R(x)$ on the interval $0 \leq x \leq 115$. We start by finding the critical points of R, and these occur where $R^{\prime}(x)=0$ (note that $R(x)$ is a quadratic polynomial so that it and it's derivative are defined everywhere). By direct calculation,

$$
R^{\prime}(x)=22.5+25(-0.04 x+1.9)=22.5-x+47.5
$$

When we set $R^{\prime}(x)=0$ and solve for x we get $x=70$, the single critical point of $R(x)$. Since $R(x)$ is a parabola opening down, $x=70$ is in fact the global maximum of $R(x)$. Furthermore, $T(70)=43$ (and observe that $70+43=113<115$ so that this falls within the stadium capacity). Therefore, to maximize revenue, U-M should sell 70,000 pre-season tickets and 43,000 term tickets.

