3. (12 points) For the function $f(x)=a x^{4}-3 x^{3}$ with constant $a>0$, use the techniques of calculus to answer the following. Show your work and proper justification for your answers.
(a) Determine all critical points of f. Classify each as a local maximum, a local minimum, or neither.

First, $f^{\prime}(x)=4 a x^{3}-9 x^{2}=x^{2}(4 a x-9)$ which is everywhere defined. So the critical points are the zeroes which are $x=0$ and $x=\frac{9}{4 a}$. Since the long term behavior of f^{\prime} is like $4 a x^{3}$, we see that $f^{\prime}(x)<0$ for $x<0$ and $f^{\prime}(x)>0$ for $x>\frac{9}{4 a}$.
For $0<x<\frac{9}{4 a}$, note that the sign of $f^{\prime}(x)$ is determined by the sign of $4 a x-9$ because x^{2} is always positive. Since $4 a x-9$ is just a line with positive slope (recall $a>0$) and x-intercept $\frac{9}{4 a}$ we must have that $4 a x-9<0$ for $x<\frac{9}{4 a}$. It follows that $f^{\prime}(x)<0$ for $0<x<\frac{9}{4 a}$. Using the first derivative test, $x=\frac{9}{4 a}$ is a local minimum and $x=0$ is neither.
(b) Determine any global maxima or minima (if any).

The long run behavior of $f(x)$ is like $a x^{4}$ so we see that $f(x) \rightarrow \infty$ as $x \rightarrow \pm \infty$. Therefore $f(x)$ has no global maximum, but $x=\frac{9}{4 a}$ is the global minimum.
(c) Determine all (if any) inflection points.

The second derivative, $f^{\prime \prime}(x)=12 a x^{2}-18 x=x(12 a x-18)$. So the zeroes of the second derivative are $x=0$ and $x=\frac{18}{12 a}=\frac{3}{2 a}$. Because the second derivative is a parabola opening upward, we conclude that $f^{\prime \prime}(x)<0$ for $0<x<\frac{3}{2 a}$ and that $f^{\prime \prime}(x)>0$ for $x<0$ and $x>\frac{3}{2 a}$. Thus both $x=0$ and $x=\frac{18}{12 a}$ are points of inflection.

