5. (10 points)
(a) If the graph of

$$
\frac{a}{y}+x^{2}+b \ln y=6
$$

goes through the point $(2,1)$ for some implicitly defined y, find a.

Since $(2,1)$ is on the curve it must satisfy the defining equation. Therefore,

$$
a+4+0=6
$$

so $a=2$.
(b) Suppose $g(x)=-4 x+9$ is the equation of the tangent to the curve defined above at the point $(2,1)$. Find b.

The tangent line has a slope of -4 which tells us that $\frac{d y}{d x}=-4$ at the point $(2,1)$. We can compute $\frac{d y}{d x}$ explicitly:

$$
-a y^{-2} \frac{d y}{d x}+2 x+b y^{-1} \frac{d y}{d x}=0
$$

Plugging in $a=2$ and solving for $\frac{d y}{d x}$ gives:

$$
\frac{d y}{d x}=\frac{-2 x}{b y^{-1}-2 y^{-2}}
$$

So when we plug in $x=2, y=1$ and $\frac{d y}{d x}=-4$ we get the equation:

$$
-4=\frac{-4}{b-2}
$$

so that $b=3$ follows.

