- 4. (12 points) Ellen and Renzo ran the Detroit marathon last weekend. The distance Ellen traveled (in meters) is given by E(t) where t is time measured in seconds since the start of the race. Similarly, the distance in meters Renzo traveled is given by the function R(t). For x measured in meters let $F(x) = R(E^{-1}(x))$. Assume that Ellen moves forward throughout the race—she does not even take a rest!
 - (a) What is the practical interpretation of F(50).

(b) After the initial blast of speed from her start, Ellen ran at a constant rate of 5 meters per second for 2 < t < 10, and she had run a distance of 39 meters after 7 seconds. Renzo wore a device that tracked the distance he had run at one second intervals. The data he collected is summarized in the table below.

\overline{t}	0	1	2	3	4	5	6	7	8	9	10
R(t)	0	10	16	22	28	34	40	46	52	58	64

Use any of the information above to approximate F'(39).

(c) Give a practical interpretation of F'(39).