4. (12 points) Ellen and Renzo ran the Detroit marathon last weekend. The distance Ellen traveled (in meters) is given by $E(t)$ where t is time measured in seconds since the start of the race. Similarly, the distance in meters Renzo traveled is given by the function $R(t)$. For x measured in meters let $F(x)=R\left(E^{-1}(x)\right)$. Assume that Ellen moves forward throughout the race-she does not even take a rest!
(a) What is the practical interpretation of $F(50)$.
(b) After the initial blast of speed from her start, Ellen ran at a constant rate of 5 meters per second for $2<t<10$, and she had run a distance of 39 meters after 7 seconds. Renzo wore a device that tracked the distance he had run at one second intervals. The data he collected is summarized in the table below.

t	0	1	2	3	4	5	6	7	8	9	10
$R(t)$	0	10	16	22	28	34	40	46	52	58	64

Use any of the information above to approximate $F^{\prime}(39)$.
(c) Give a practical interpretation of $F^{\prime}(39)$.

