2. (20 points) Suppose f, g, and h are all differentiable functions of $x, f(x)$ and $g(x)$ are positive for all x, and that a, and b are positive constants. Your answers below will be in terms of f, g, h (and/or their derivatives) and perhaps the constants a or b.
(a) Find $\frac{d y}{d x}$ if $y=f(2)+\ln \left(f\left(x^{2}\right)\right)$.

$$
\frac{d y}{d x}=\frac{f^{\prime}\left(x^{2}\right) 2 x}{f\left(x^{2}\right)}
$$

(b) Find $\frac{d y}{d x}$ if $y=f\left(x^{a}+2 x\right)+2^{g(x)}$.

$$
\frac{d y}{d x}=f^{\prime}\left(x^{a}+2 x\right)\left(a x^{a-1}+2\right)+\ln 2\left(2^{g(x)}\right) g^{\prime}(x)
$$

(c) Find $\frac{d y}{d x}$ if $y=\frac{h(b x)}{\cos (x)+2}$.

$$
\frac{d y}{d x}=\frac{b h^{\prime}(b x)(\cos (x)+2)+h(b x) \sin (x)}{(\cos (x)+2)^{2}}
$$

(d) If $f^{\prime}(x)=a g(x)$ and $g^{\prime}(x)=-a f(x)$, when is $y=f(x) g(x)$ increasing? [Refer to the instructions above for conditions on f, g and a.] Justify your answer.

$$
\begin{aligned}
\frac{d y}{d x} & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& =a(g(s))^{2}-a(f(x))^{2}=a\left(\left(g^{2}(x)-f^{2}(x)\right)\right. \\
& =a(g(x)+f(x))(g(x)-f(x))
\end{aligned}
$$

Thus, since a, f and g are all positive, $\frac{d y}{d x}>0$ when $g(x)>f(x)$.

