3. (18 points) Below is a graph of the curve implicitly defined by the equation

$$
2 y^{2}-x y-x^{2}=-18
$$

(a) Find a formula for $\frac{d y}{d x}$ as a function of both x and y.

Using implicit differentiation, we have

$$
4 y \frac{d y}{d x}-y-x \frac{d y}{d x}-2 x=0, \text { so }(4 y-x) \frac{d y}{d x}=y+2 x
$$

which gives $\frac{d y}{d x}=\frac{y+2 x}{4 y-x}$.
(b) Find the value of $\frac{d y}{d x}$ at the point $(5,-1)$.

$$
\left.\frac{d y}{d x}\right|_{(5,-1)}=\frac{-1+10}{-4-5}=-\frac{9}{9}=-1
$$

(c) Find any points $\left(x_{0}, y_{0}\right)$ where $\frac{d y}{d x}$ is undefined, or give justification why no such points exist.

From above, we know $\frac{d y}{d x}$ is undefined if $4 y=x$.
Thus,

$$
\begin{gathered}
2 y^{2}-4 y^{2}-16 y^{2}=-18 \\
\text { so } \quad-18 y^{2}=-18 ; \text { or } y^{2}=1 \text { which gives } y= \pm 1 .
\end{gathered}
$$

If $y= \pm 1$, and $4 y=x$, then $x= \pm 4$. The points are $(4,1)$ and $(-4,-1)$.
(d) Find any points $\left(x_{0}, y_{0}\right)$ where $\frac{d y}{d x}=0$, or give justification why no such points exist.

The expression for $\frac{d y}{d x}$ will be zero if $y=-2 x$, so

$$
2\left(4 x^{2}\right)+2 x^{2}-x^{2}=9 x^{2}=-18
$$

However, this gives $x^{2}=-2$, and there are no real solutions. Thus, the graph has no horizontal tangents, or there are no real values such that $\frac{d y}{d x}=0$.

