- 4. (12 points) Ellen and Renzo ran the Detroit marathon last weekend. The distance Ellen traveled (in meters) is given by E(t) where t is time measured in seconds since the start of the race. Similarly, the distance in meters Renzo traveled is given by the function R(t). For x measured in meters let $F(x) = R(E^{-1}(x))$. Assume that Ellen moves forward throughout the race-she does not even take a rest!
 - (a) What is the practical interpretation of F(50).

We have

$$F(50) = R(E^{-1}(50))$$

which gives the distance, in meters, that Renzo has traveled when Ellen has traveled 50 meters.

(b) After the initial blast of speed from her start, Ellen ran at a constant rate of 5 meters per second for 2 < t < 10, and she had run a distance of 39 meters after 7 seconds. Renzo wore a device that tracked the distance he had run at one second intervals. The data he collected is summarized in the table below.

t	0	1	2	3	4	5	6	7	8	9	10
R(t)	0	10	16	22	28	34	40	46	52	58	64

Use any of the information above to approximate F'(39).

$$F'(39) = R'(E^{-1}(39))(E^{-1})'(39) = R'(7)(E^{-1})'(3).$$

From the table, we approximate R'(7) = 6, and we know $E^{-1}(39) = 7$ and E'(7) = 5. Thus, since

$$(E^{-1})'(39) = \frac{1}{E'(E^{-1}(39))} = \frac{1}{E'(7)} = \frac{1}{5},$$

we have
$$F'(39) = \frac{6 \text{ meters (for Renzo)}}{5 \text{ meters (for Ellen)}}$$
.

(c) Give a practical interpretation of F'(39).

Since F'(39) is in $\frac{\text{meters for Renzo}}{\text{meters for Ellen}}$, once Ellen has run 39 meters, if Ellen's distance increases by 1 meter, Renzo will travel approximately 1.2 meters.