1. (10 points) Using the graph in the figure below to help you, find the equations of all lines through the origin and tangent to the parabola

$$
y=x^{2}-x+4
$$

[Show all relevant work—graphical approximations are not sufficient. Please circle your answers.]

The equation of any line, l, through the origin is $l=m x$ since the y-intercept is zero. A line that is tangent to the curve must have the same slope as the original curve at a given point, so

$$
y^{\prime}=2 x-1=m
$$

Therefore, at a point $x=a$ the equations of the lines tangent to the curve must satisfy

$$
\begin{aligned}
\underbrace{a^{2}-a+4}_{y} & =\underbrace{(2 a-1)}_{m} \cdot a \\
& =m \cdot x
\end{aligned}
$$

which implies $a^{2}=4$, so $a= \pm 2$.
If $a=x=2, y=6$, and $m=3$, so the equation of the line is $y=3 x$.
If $a=x=-2, y=10$, and $m=-5$, so the equation of the line is $y=-5 x$.

