2. (20 points) Suppose f and g are differentiable functions with the following values:

$$
f(0)=3, \quad f^{\prime}(0)=4, \quad g(0)=-1, \quad \text { and } \quad g^{\prime}(0)=2 .
$$

Show your work on the following:
(a) Find $h^{\prime}(0)$ given $h(x)=\frac{g(x)}{f(x)}$.

$$
h^{\prime}(x)=\frac{g^{\prime}(x) f(x)-g(x) f^{\prime}(x)}{f^{2}(x)} \text { thus } h^{\prime}(0)=\frac{(2)(3)-(-1)(4)}{9}=\frac{10}{9}
$$

(b) i. Find $k^{\prime}(0)$ given $k(x)=(g(x))^{2} f(x)$.
$k^{\prime}(x)=2 g(x) g^{\prime}(x) f(x)+(g(x))^{2} f^{\prime}(x)$.
Thus $k^{\prime}(0)=2(-1)(2)(3)+(-1)^{2} 4=-8$
ii. Determine the local linearization of $k(x)$ near $x=0$, and use that to approximate $k(0.001)$.

Near $x=0$,

$$
k(x) \approx k(0)+k^{\prime}(0)(x-0),
$$

and $k(0)=(-1)^{2}(3)=3$.

Therefore $k(0.001) \approx 3+(-8)(0.001)=2.992$.
(c) Find $m^{\prime}(0)$ given $m(x)=\sin \left((f(x))^{3}\right)$.

$$
\begin{aligned}
& m^{\prime}(x)=\cos \left((f(x))^{3}\right)\left(3(f(x))^{2} f^{\prime}(x)\right) \\
& \text { so } m^{\prime}(0)=\cos (27) \cdot(27)(4)=108 \cos (27)
\end{aligned}
$$

