3. (14 points) Find the values of the constants a, b and c such that the function

$$
f(x)=a x^{2}+b x+c
$$

"fits" the function

$$
g(x)=-2 \ln (x+1)+0.5 e^{x}+1.5 \sin (x)
$$

near $x=0$ in the sense that:

$$
g(0)=f(0), \quad g^{\prime}(0)=f^{\prime}(0) \quad \text { and } \quad g^{\prime \prime}(0)=f^{\prime \prime}(0)
$$

Show all work.

We have $g(0)=0+0.5+0=1 / 2$ and $f(0)=c$,
so $c=0.5$.

We find the first derivatives:
$g^{\prime}(x)=\frac{-2}{(x+1)}+0.5 e^{x}+1.5 \cos (x), \quad$ and $\quad f^{\prime}(x)=2 a x+b$.
Thus, $g^{\prime}(0)=-2+0.5+1.5=0, \quad$ and $\quad f^{\prime}(x)=b$,
so $b=0$.

Second derivatives give:
$g^{\prime \prime}(x)=\frac{2}{(x+1)^{2}}+0.5 e^{x}-1.5 \sin (x) \quad$ and $\quad f^{\prime \prime}(x)=2 a$.

Thus,
$g^{\prime \prime}(0)=2+0.5-0=2.5 \quad$ and $\quad f^{\prime \prime}(0)=2 a$,
so $2 a=2.5$ which gives $a=1.25$.

$$
\begin{aligned}
& a=\frac{1.25}{} \\
& b=0 \quad 0 \\
& c=\frac{0.5}{}
\end{aligned}
$$

