4. (10 points) Consider the graphs of $f(x)$ and $g(x)$ below. Let $h(x)=f(g(x))$.

(a) Evaluate $h^{\prime}(30)$ exactly. Show your work.
$h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
At $x=30$ we have $g(30)=15$ and $g^{\prime}(30)=0.5$. Thus $h^{\prime}(30)=f^{\prime}(15) 0.5$. However, $f^{\prime}(15)=0$, so

$$
h^{\prime}(30)=0 .
$$

(b) Determine the range of values of x for which $h^{\prime}(x)<0$. Justify your answer.

Note, for $h^{\prime}(x)<0$ we need to be in the x range where $f^{\prime}(x)<0$, since $g^{\prime}(x)>0$ for all x.

We have $f^{\prime}(x)<0$ for $20<x<30$, so $g^{\prime}(x)$ must be between 20 and 30 . We have $g(40)=20$ and the slope of g for $x>40$ is 4 . Thus, as $g(x)$ increases by $10, x$ increases by 2.5 , so $g(42.5)=30$.

Thus, the range of values of x such that $h^{\prime}(x)<0$ is $40<x<42.5$.
Note that f is not differentiable at $x=20$ or $x=30$, so the inequality does not include the endpoints.

