5. (12 points) The graph of

$$
x^{2}-x y+y^{2}=3
$$

is a "tilted" ellipse (see the figure below). Among all points (x, y) on this graph, find the points that have the largest and smallest values of y. [Hint: Look at the figure to consider the conditions that would be true for y to take on largest or smallest values.] Be sure to show all work in order to justify your answer (i.e.. estimating points from a graph will not be sufficient).

Note that the largest and smallest values of y occur when $\frac{d y}{d x}=0$. Taking the derivative of both sides with respect to x gives

$$
2 x-\left(x \frac{d y}{d x}+y\right)+2 y \frac{d y}{d x}=0
$$

so

$$
(2 y-x) \frac{d y}{d x}=y-2 x
$$

which gives

$$
\frac{d y}{d x}=\frac{y-2 x}{2 y-x}
$$

Therefore $\frac{d y}{d x}=0$ when $x=\frac{y}{2}$.
Substituting into the original equation:

$$
\frac{y^{2}}{4}-\frac{y^{2}}{2}+y^{2}=3 ; \quad y^{2}=4 ; \quad \text { so } y= \pm 2
$$

Solving for x when $y= \pm 2$ gives the points $(1,2)$ and $(-1,-2)$.

Largest y value is associated with the point: $(1,2)$

Smallest y value is associated with the point: $(-1,-2)$

