8. (17 points)

(a) A small company makes x hand-painted tiles daily at a cost of $C(x)=125+30 x+2 x^{3 / 2}$ dollars. What daily production level minimizes the average cost-i.e., the cost per tile?

First define the average cost

$$
A(x)=\frac{C(x)}{x}=\frac{125}{x}+30+2 x^{1 / 2}
$$

We find $A^{\prime}(x)$ and any critical points:

$$
A^{\prime}(x)=-\frac{125}{x^{2}}+x^{-1 / 2}
$$

Thus A^{\prime} is undefined if $x=0$ (not in the domain of A), and $A^{\prime}(x)=0$ if $x=25$.

Thus, we have one critical point at $x=25$.
Note that

$$
A^{\prime \prime}(x)=\frac{250}{x^{3}}-0.5 x^{-3 / 2}
$$

and $A^{\prime \prime}(25)>0$. Thus, $x=25$ is a local min, and since this is the only critical point and the function is continuous on its domain, $x=25$ is the absolute minimum.
(b) If the the company sells each tile for $\$ 75$, how many tiles should they make daily in order to maximize daily profit?

First define the profit function $\pi(x)=R(x)-C(x)$, ie

$$
\pi(x)=75 x-125-30 x-2 x^{3 / 2}=-125+45 x-2 x^{3 / 2}
$$

The critical points occur when $\pi^{\prime}(x)=0$ or is undefined. For x in the domain, the only critical point is when $\pi(x)=0$, or

$$
\pi^{\prime}(x)=45-3 x^{1 / 2}=0, \text { giving } x=225
$$

Once again we must test the critical point. The second derivative here is

$$
\pi^{\prime \prime}(x)=-\frac{3}{2} x^{-1 / 2}
$$

which is negative for $x>0$, so the critical point gives a local max. Since it is the only critical point on the domain and the function is continuous, the maximum profit occurs when the company makes 225 tiles per day.

