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8. (17 points)

(a) A small company makes x hand-painted tiles daily at a cost of C(x) = 125 + 30x + 2x3/2

dollars. What daily production level minimizes the average cost—i.e., the cost per tile?

First define the average cost

A(x) =
C(x)

x
=

125

x
+ 30 + 2x1/2.

We find A′(x) and any critical points:

A′(x) = −

125

x2
+ x−1/2.

Thus A′ is undefined if x = 0 (not in the domain of A), and A′(x) = 0 if x = 25.

Thus, we have one critical point at x = 25.

Note that

A′′(x) =
250

x3
− 0.5x−3/2,

and A′′(25) > 0. Thus, x = 25 is a local min, and since this is the only critical point and the
function is continuous on its domain, x = 25 is the absolute minimum.

(b) If the the company sells each tile for $75, how many tiles should they make daily in order to
maximize daily profit?

First define the profit function π(x) = R(x) − C(x), ie

π(x) = 75x − 125 − 30x − 2x3/2 = −125 + 45x − 2x3/2.

The critical points occur when π′(x) = 0 or is undefined. For x in the domain, the only
critical point is when π(x) = 0, or

π′(x) = 45 − 3x1/2 = 0, giving x = 225.

Once again we must test the critical point. The second derivative here is

π′′(x) = −

3

2
x−1/2

which is negative for x > 0, so the critical point gives a local max. Since it is the only critical
point on the domain and the function is continuous, the maximum profit occurs when the
company makes 225 tiles per day.
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