1. For the following questions select true if the statement is always true, and false otherwise. Each question is worth 1 point.
(a) If f is differentiable and $f^{\prime}(p)=0$ or $f^{\prime}(p)$ is undefined, then $f(p)$ is either a local maximum or a local minimum.
True False
(b) For f a twice differentiable function, if f^{\prime} is increasing, then f is concave up and increasing.
True False
(c) The global maximum of $f(x)=x^{2}$ on every closed interval is at one of the endpoints of the interval.

> True False
(d) If $f(x)$ has an inverse function $g(x)$, then $g^{\prime}(x)=1 / f^{\prime}(x)$.

True
False
(e) If a function is periodic with period c, then so is its derivative.

True False
(f) If $C(q)$ represents the cost of producing a quantity q of goods, then $C^{\prime}(0)$ represents the fixed costs.

True False
(g) If a differentiable function $f(x)$ has a global maximum on the interval $0 \leq x \leq 10$ at $x=0$, then $f^{\prime}(x) \leq 0$ for $0 \leq x \leq 10$.
True False
(h) If $f(x)$ is differentiable and concave up, then $f^{\prime}(a)<\frac{f(b)-f(a)}{b-a}$ for $a<b$.
True

False
(i) If you zoom in with your calculator on the graph of $y=f(x)$ in a small interval around $x=10$ and see a straight line, then the slope of that line equals the derivative $f^{\prime}(10)$.

True
False
(j) If $f^{\prime}(x) \geq 0$ for all x, then $f(a) \leq f(b)$ whenever $a \leq b$.

True
False

