8. (14 points) Use the functions $f(x)$ and $g(x)$ graphed below to answer the following questions:

(a) (3 points each) Graph $f^{\prime}(x)$ and $g^{\prime}(x)$.

(b) (2 points) Compute $h^{\prime}(3)$ for $h(x)=f(g(x))$.

We have that $h^{\prime}(3)=f^{\prime}(g(3)) g^{\prime}(3)$, but we see that since $g^{\prime}(3)$ is undefined, that we cannot compute $h^{\prime}(3)$.
(c) (2 points) Define $r(x)=g(x)-f(x)$. For what x value(s) in $[0,5]$ is $r(x)$ maximum?

The function $r(x)$ is maximum whenever $g(x)$ is most above $f(x)$, which happens for all x in $[1,2]$, and at $x=4$.
(d) (2 point) Find $s^{\prime}(2.5)$ for $s(x)=f(x) g(x)$.

We have that $s^{\prime}(2.5)=f^{\prime}(2.5) g(2.5)+f(2.5) g^{\prime}(2.5)$, and using the results of part (a), we find that $s^{\prime}(2.5)=(2)(2)+(2)(0)=4$.
(e) (2 points) Find $w^{\prime}(2.5)$ for $w(x)=f(x) / g(x)$.

We have that $w^{\prime}(2.5)=\frac{f^{\prime}(2.5) g(2.5)-f(2.5) g^{\prime}(2.5)}{(g(2.5))^{2}}$, and from part (a) again, we get $w^{\prime}(2.5)=\frac{(2)(2)-(2)(0)}{(2)^{2}}=1$.

