3. [14 points] Use the following table and graph to answer the questions below. Note that the graph of g passes through the points $(-2,2),(0,0)$, and $(2,4)$. All answers should be exact.

x	-4	-3	-2	-1	0	1	2	3	4
$f(x)$	0	1	-1	2	-1	-3	2	4	1
$f^{\prime}(x)$	-1	1	-2	3	-2	2	0	3	2

a. [4 points] Let $k(x)=g(x) \arctan (f(x))$. Compute $k^{\prime}(-2)$ or explain why it does not exist.

Solution: Using the Product and Chain Rules, we have

$$
\begin{aligned}
k^{\prime}(x) & =g(x)\left(\frac{1}{1+(f(x))^{2}}\right) f^{\prime}(x)+g^{\prime}(x) \arctan (f(x)) \\
\text { So } k^{\prime}(-2) & =g(-2)\left(\frac{1}{1+(f(-2))^{2}}\right) f^{\prime}(-2)+g^{\prime}(-2) \arctan (f(-2)) \\
& =(2)\left(\frac{1}{1+(-1)^{2}}\right)(-2)+0(\arctan (-1))=-2
\end{aligned}
$$

Hence $k^{\prime}(-2)=-2$.
b. [4 points] Let $a(x)=\frac{(f(x))^{3}}{3 g(x)}$. Compute $a^{\prime}(1)$ or explain why it does not exist.

Solution: Applying the Quotient and Chain Rules, we have

$$
\begin{aligned}
a^{\prime}(x) & =\frac{3 g(x)\left[3(f(x))^{2}\right] f^{\prime}(x)-(f(x))^{3}\left(3 g^{\prime}(x)\right)}{(3 g(x))^{2}} . \\
\text { So } a^{\prime}(1) & =\frac{3 g(1)\left[3(f(1))^{2}\right] f^{\prime}(1)-(f(1))^{3}\left(3 g^{\prime}(1)\right)}{(3 g(1))^{2}} \\
& =\frac{3(2)\left[3(-3)^{2}\right](2)-(-3)^{3}(3)(2)}{(3(2))^{2}}=\frac{27}{2}
\end{aligned}
$$

Hence $a^{\prime}(1)=\frac{27}{2}$.
c. [6 points] Let $h(x)=g(g(x))$.

Find all local maxima and minima of the function h on the interval $(-4,4)$.
Then find the global maximum and global minimum values of h on the interval $[-4,4]$.
Solution: First, we find the critical points of h. By the Chain Rule, $h^{\prime}(x)=g^{\prime}(g(x)) g^{\prime}(x)$ so the critical points of h are values of x for which either x or $g(x)$ is a critical point of g, i.e. either $g^{\prime}(x)$ or $g^{\prime}(g(x))$ is zero or does not exist . Critical points of g are $x=-2$, $x=0$, and $x=2$. So, the critical points of h in $(-4,4)$ are $x=-2, x=0, x=2$, and $x=1$ (since $g(1)=2$).
We check that h^{\prime} is positive on the intervals $(-4,-2),(0,1)$, and $(2,4)$ while h^{\prime} is negative on the intervals $(-2,0)$ and $(1,2)$. By the First Derivative Test, we conclude that h has a local minimum at $x=0$ and $x=2$ and h has a local maximum at $x=-2$ and $x=1$. Since h is continuous, by the Extreme Value Theorem, h attains a global maximum and a global minimum on $[-4,4]$. These values occur at a critical point or endpoint. Evaluating h at these points we have:

$$
\begin{aligned}
h(-4) & =g(g(-4))=g(0)=0 \\
h(-2) & =g(g(-2))=g(2)=4 \\
h(0) & =g(g(0))=g(0)=0 \\
h(1) & =g(g(1))=g(2)=4 \\
h(2) & =g(g(2))=g(4) \approx 3.5 \\
h(4) & =g(g(4)) \approx g(3.5) \approx 3.7
\end{aligned}
$$

Thus, the global maximum occurs at $x=-2$ and $x=1$ with a global maximum value of 4; global minimums are at $x=-4$ and $x=0$, and the global minimum value is 0 .

